Physiker der TU Darmstadt und ihre Kollaborationspartner haben mit laserspektroskopischen Messungen an Cadmiumisotopen ein verbessertes Modell des Atomkerns bestätigt. Es wurde entwickelt, um das ungewöhnliche Verhalten der Radien von Calciumisotopen zu beschreiben. Die in „Physical Review Letters“ veröffentlichten Ergebnisse könnten ein Schritt zu einem globalen Modell der Kernstruktur sein.

Der Ladungsradius, also die räumliche Ausdehnung der positiven Kernladung, ist eine der fundamentalen Kenngrößen eines Atomkerns und hinterlässt seine Spuren im optischen Spektrum eines Atoms, obwohl dieses von der Atomhülle und den darin befindlichen Elektronen erzeugt wird. Das Spe...
Organe aus dem Drucker – davon träumen nicht nur Patienten, sondern auch die Entwickler von Pharmazeutika, die an künstlich erzeugten Gewebeproben die Wirkung neuer Medikamente untersuchen wollen. Forschern der Hochschule München ist es jetzt erstmals gelungen, mit Hilfe eines Femtosekundenlasers lebende menschliche Zellen ohne Verunreinigung oder genetische Schäden in 3D auf ein Glasplättchen zu drucken. Die Arbeit wurde unlängst im Fachmagazin PLOS ONE veröffentlicht.

Die Wirklichkeit ist zu schnell, um sie zu begreifen. Im Mikrosekundentakt schießt eine winzige Fontäne aus dem Probenbehälter und trifft auf ein mit Gel beschichtetes Glasplättchen. Innerhalb weniger Seku...
Nanokatalysatoren ermöglichen zahlreiche chemische Schlüsselprozesse - wobei Abläufe auf der atomaren Ebene noch nicht vollständig verstanden sind. Jetzt hat eine deutsch-britische Forschergruppe um Professorin Ute Kaiser von der Universität Ulm unter anderem das nanokatalytische Verhalten von 14 Übergangsmetallen in Echtzeit beobachtet. Ihre vergleichenden Untersuchungen mithilfe der hochauflösenden aberrationskorrigierten Niederspannungs-Transmissionselektronenmikroskopie wurden erst durch winzige Kohlenstoffnanoröhren möglich. In der Fachzeitschrift "Nature Communications" schlagen die Forschenden als Ergebnis eine Neuordnung der Übergangsmetalle im Periodensystem der Elemente v...
Im Zellkern ist das Erbgut dicht gewickelt. Trotzdem muss die Zelle immer wieder unterschiedliche Gene zugänglich machen. LMU-Forscher haben nun einen Mechanismus entschlüsselt, wie die molekularen Maschinen dabei DNA mit einem Zollstock aus Proteinen abmessen.

Das Erbmolekül DNA liegt im Zellkern als dicht gepackter DNA-Protein-Komplex vor, der Chromatin genannt wird. Dazu wird die DNA um einen Kern aus Histon-Proteinen zu sogenannten Nukleosomen gewickelt und durch spezielle Proteine dicht gepackt. Die Struktur des Chromatins reguliert den Zugang zu den Genen und damit die Genaktivität. Um auf Stoffwechselsignale, veränderte Umweltbedingungen oder Entwicklungsprozesse zu reagie...
Die Blutgefässbildung beruht auf der Fähigkeit der Gefässzellen, sich zu bewegen und dabei trotzdem fest miteinander verbunden zu bleiben. Dadurch können die Gefässe wachsen und sich verzweigen, ohne dass Blut austritt. In «Nature Communications» beschreiben Wissenschaftler vom Biozentrum der Universität Basel, wie dies vonstattengeht: Das Zellskelett schiebt die Zelle zunächst ein Stück vorwärts und danach schliesst ein Ankerprotein wie ein Reissverschluss den Spalt zur Nachbarzelle.

Die Blutgefässe bilden ein weit verzweigtes Versorgungsnetzwerk, das unseren Körper von Kopf bis Fuss durchzieht. Sie sind die Leitungsbahnen für Blutzellen und transportieren Sauerstoff un...
Wasser marsch! Bevor Proteine sich mit Bindungspartnern zusammenschließen, füllen Wassermoleküle den Hohlraum, den die Proteine für ihre Bindungspartner bereithalten. Das hat eine europäische Forschergruppe um den Marburger Chemiker Professor Dr. Gerhard Klebe experimentell untersucht, indem sie die Lage des Wassers in einem Protein mit ausgeklügelten Methoden analysierte. Die Wassermoleküle lassen sich aufgrund ihrer großen Beweglichkeit mehr oder weniger leicht entfernen, um den Bindungspartnern Platz zu machen. Die Wissenschaftler berichten in der aktuellen Ausgabe des Magazins „Nature Communications“ über ihre Ergebnisse.

Proteine und andere Biomoleküle sind in der Z...
Die Ergebnisse einer Vergleichsstudie des Leibniz-Instituts für Lebensmittel-Systembiologie an der TU München (Leibniz-LSB@TUM) erlauben es erstmals, die Backqualität von Dinkel-, Emmer- und Einkorn-Vollkornmehl schnell und verlässlich vorherzusagen.

Die neuen Resultate könnten zukünftig dazu beitragen, zeitraubende und aufwendige Voruntersuchungen im Labor zu ersetzen. Die Wissenschaftler und Wissenschaftlerinnen veröffentlichten ihre Ergebnisse jetzt im Journal of Cereal Science.

Glutengehalt und -zusammensetzung bestimmen die Backeigenschaften

Gluten ist der Oberbegriff für ein Gemisch aus verschiedenen Speichereiweißen, die natürlicherweise im Korn u...
Forscher haben das Protein Nurr1 so modifiziert, dass es von außen in Zellen eindringen kann. Eine Fehlfunktion des Proteins kann unter anderem eine Ursache der Parkinson-Krankheit sein. Nurr1 wird schon länger als möglicher Ansatzpunkt für die Parkinson-Therapie diskutiert, ist in seiner normalen Form aber nicht brauchbar, da es nicht in Zellen gelangen kann. Ein Team der Ruhr-Universität Bochum und der US-amerikanischen National Institutes of Health (NIH) nutzte ein Importsignal aus Bakterien, um Nurr1 in Zellen einzuschleusen. Die Wissenschaftler zeigten auch, dass sich das modifizierte Protein positiv auf das Überleben von Dopamin-produzierenden Nervenzellen auswirken kann.

...
Die Metalle Calcium, Barium und Strontium verletzen klassische Regeln der Chemie, wenn sie sich mit acht Kohlenmonoxid-Molekülen verbinden und dadurch Carbonylkomplexe bilden. Das haben der Marburger Chemiker Professor Dr. Gernot Frenking sowie chinesische Fachkolleginnen und -kollegen nachgewiesen, indem sie Experimente mit Berechnungen kombinierten. Das Team berichtet über seine Ergebnisse vorab online im Wissenschaftsmagazin „Science“.

„Atome sind die Bausteine der Chemie, mit denen Chemiker eine inzwischen kaum überschaubare Zahl von Molekülen aufbauen, die in unterschiedlichster Weise chemische Bindungen enthalten“, erläutert Gernot Frenking, der als Seniorautor des ...
In der Chemie ist eine Reaktion spontan, wenn keine externe Energie diese auslöst. Wie viel Energie in einer Reaktion freigesetzt wird, hängt von den Gesetzen der Thermodynamik ab. Bei den spontanen Reaktionen im menschlichen Körper reicht diese oft nicht aus, um medizinische Implantate zu versorgen. Jetzt haben Wissenschaftler am Max-Planck-Institut für Intelligente Systeme in Stuttgart gemeinsam mit einem internationalen Forscherteam einen Weg gefunden, den Energieertrag zu steigern, indem sie die Energie vieler spontaner Enzymreaktionen speichern und bündeln. Die Arbeit wurde im renommierten Fachjournal Nature Communications veröffentlicht und zeigt, wie reichlich vorkommende, simpl...
Seite 4 von 63

Fortbildungen

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.