Volltextsuche

Montag, den 14. August 2017 um 07:06 Uhr

Chemiker der Universität Münster entwickeln neues Verfahren zur Synthese von fluorierten Molekülringen

 Chemiker um Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität Münster (WWU) haben eine neue, einfache Methode zur Herstellung von bislang schwer herstellbaren Fluor-tragenden dreidimensionalen molekularen Ringstrukturen entwickelt. Da diese Verbindungen zum Beispiel eine große Rolle bei der Entwicklung neuer Wirkstoffe haben, ist diese neue Methode von großer Bedeutung.

Farben, Medikamente und funktionale Materialien – solche Produkte basieren häufig auf innovativen, von Chemikern entwickelten Molekülen. Zu ihrer Herstellung stehen den Experten viele chemische Reaktionen zur Verfügung – allerdings mit Einschränkungen. Beispielsweise sind fluorierte Verbindungen, also Moleküle, die mindestens ein Fluoratom enthalten, häufig schwer herstellbar. Dabei sind sie von herausragender Bedeutung beispielsweise bei der Entwicklung von Wirkstoffen, weil sie oft ungewöhnliche chemische Eigenschaften haben. Daher ist die Suche nach neuen Wegen, um solche Verbindungen herzustellen, wichtig. Chemiker der Westfälischen Wilhelms-Universität (WWU) haben nun das bisher Unmögliche möglich gemacht: Sie haben eine neue, leicht durchführbare Synthesemethode zur Herstellung von solchen Fluor-tragenden dreidimensionalen "gesättigten" (nur aus Einfachbindungen bestehenden) molekularen Ringstrukturen entwickelt. Die Studie von Prof. Dr. Frank Glorius, Mario Wiesenfeldt, Dr. Zackaria Nairoukh und Dr. Wei Li ist in der Fachzeitschrift "Science" online veröffentlicht.

"Unsere Publikation ist ein Durchbruch. Sie kann eine große Bedeutung für die effiziente Herstellung von neuen Molekülen und somit für den Zugang zu neuartigen Medikamenten, Pflanzenschutzwirkstoffen und Materialien haben", so die Einschätzung von Frank Glorius.

Seine neue Herstellungsmethode startet mit flachen, "aromatischen" und damit besonders stabilen Ringverbindungen aus Kohlenstoff, die Fluoratome tragen. Die von den Münsteranern genutzten Startmoleküle sind günstig im Handel erhältlich oder leicht herzustellen.

Mithilfe eines Katalysators gelang den Chemikern die Übertragung von Wasserstoffatomen (Hydrierung) gezielt an eine Seite des Ringsystems. Als Katalysatoren bezeichnen Chemiker und Biochemiker Enzyme oder andere Moleküle, die einzelne Reaktionsschritte beschleunigen oder erst möglich machen. Eine gezielte Übertragung ermöglicht die Steuerung der Produkteigenschaften, beispielsweise der Löslichkeit, des Aggregatzustandes oder – wie hier besonders wichtig – der Polarität. Ein Molekül ist "polar", wenn innerhalb des Moleküls eine Ladungstrennung in negativ und positiv geladene Molekülfragmente vorliegt. In den nun synthetisierten Produkten befinden sich die eher positiv geladenen Wasserstoffatome auf der einen Seite und die eher negativ geladenen Fluoratome auf der anderen Seite des Rings.

Die Gruppe um Frank Glorius nutzte viele verschiedene fluorierte aromatische Verbindungen als Startmoleküle und setzte sie erfolgreich in die gewünschten Produkte um. "Es ist aus zwei Gründen überraschend, dass unsere Methode klappt", unterstreicht Frank Glorius. "Die gebundenen Fluoratome setzen die Reaktivität der ohnehin wenig reaktionsfreudigen aromatischen Startverbindungen in der katalytischen Hydrierung noch weiter herab. Dies gilt besonders, wenn mehrere Fluoratome an den aromatischen Ring gebunden sind. Noch gravierender ist allerdings, dass typischerweise die Kohlenstoff-Fluor-Bindungen die Reaktion nicht überstehen und das Fluor abgespalten wird." In mehreren Studien sei dies in der Vergangenheit beobachtet worden. Bei der neuen Methode dagegen tolerieren die Fluoratome die katalytische Hydrierung. "Wir haben ein Katalysatorsystem gefunden, das äußerst kraftvoll ist, also die aromatische Stabilisierung überwindet. Gleichzeitig ist es besonders mild – die Kohlenstoff-Fluor-Bindungen bleiben erhalten." Die münsterschen Chemiker setzten als Katalysator eine Kombination aus dem Edelmetall Rhodium und einem besonders elektronenreichen Carben-Liganden (ein spezielles "metallbindendes" Molekül) ein, der die Eigenschaften des Katalysators entscheidend prägt.

Erstautor Mario Wiesenfeldt fasst zusammen: "Die neue Methode erlaubt einen unerwartet einfachen Zugang zu einem faszinierenden Strukturmotiv: cyclisch, gesättigt und selektiv auf einer Seite fluoriert. Die Produkte der Reaktion zeichnen sich meist durch eine hohe Polarität aus."

In einem Schritt und in größeren Mengen hergestellt

Zum Hintergrund: Die Verbindung "all-cis-1,2,3,4,5,6-Hexafluorcyclohexan", bei der der gesättigte Kohlenstoffsechsring die maximal mögliche Zahl von sechs Fluoratomen auf der gleichen Seite des Ringes trägt, zählt zu den polarsten derzeit bekannten organischen Verbindungen. Diese Verbindung wurde erstmals im Jahr 2015 von Prof. David O’Hagan von der University of St. Andrews in Schottland hergestellt. Dabei benötigte er für die Synthese ein aufwendiges zwölfstufiges Verfahren. Das münstersche Team kann diese Verbindung sowie viele ähnliche Moleküle nun erstmals bequem in einem Schritt und daher auch in größeren Mengen herstellen.

Asymmetrische Hydrierungen von Aromaten als Herausforderung

"Die Hydrierung ist eine attraktive und häufig sehr saubere Herstellungsmethode", unterstreicht Frank Glorius. „Ein besonders prominentes Beispiel ist die Ammoniaksynthese nach dem Haber-Bosch-Verfahren, also die Hydrierung von Stickstoff, für die über ein Prozent des Weltenergiebedarfs benötigt wird. Sie ist von fundamentaler Bedeutung für die Welternährung, weil sie beispielsweise für die Herstellung von Pflanzendünger sehr wichtig ist.“ Die Bedeutung spiegele sich auch darin, dass bereits drei Nobelpreise für diese Thematik vergeben wurden (Fritz Haber 1918, Carl Bosch 1931, Gerhard Ertl 2007). Ebenso wichtig sei aber auch die Hydrierung organischer Verbindungen, die zuletzt 2001 mit einem Nobelpreis für die asymmetrische Hydrierung ausgezeichnet wurde (William S. Knowles und Ryoji Noyori). Chemoselektive oder asymmetrische Hydrierungen von aromatischen Verbindungen seien allerdings nach wie vor besonders herausfordernd.


Den Artikel finden Sie unter:

http://www.uni-muenster.de/news/view.php?cmdid=9044

Quelle: Westfälische Wilhelms-Universität Münster (08/2017)


Publikation:
Mario P. Wiesenfeldt, Zackaria Nairoukh, Wie Li und Frank Glorius: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes. Science; Published online 10 Aug 2017; DOI: 10.1126/science.aao0270
http://science.sciencemag.org/content/early/2017/08/09/science.aao0270

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.