Volltextsuche

Montag, den 05. Juli 2010 um 07:41 Uhr

Architektur des größten Proteinkomplexes in der Atmungskette aufgeklärt

Wissenschaftler der Universität Freiburg und der Universität Frankfurt haben die Architektur des größten Proteinkomplexes der zellulären Atmungskette aufgeklärt. Sie entdeckten einen bisher unbekannten Mechanismus der Energieumwandlung in diesem molekularen Komplex. Der Mechanismus ist notwendig, damit die Zelle die in der Nahrung gespeicherte Energie nutzen kann.

Nach zehnjähriger Forschungsarbeit ist nun die röntgenkristallographische Strukturanalyse des riesigen und kompliziertesten Proteinkomplexes der mitochondrialen Atmungskette gelungen. Er besteht aus mehr als 40 verschiedenen Proteinen, markiert den Anfangspunkt der Zellatmung und wird deshalb auch als mitochondrialer Komplex I bezeichnet. Die Ergebnisse erscheinen in der aktuellen Online-Ausgabe der Fachzeitschrift „Science“.

Ein detailliertes Verständnis der Funktion von Komplex I ist von besonderem medizinischem Interesse, da Fehlfunktionen mit einer Reihe von neurodegenerativen Erkrankungen wie Morbus Parkinson oder Morbus Alzheimer, aber auch dem biologischen Altern insgesamt, in Verbindung gebracht werden. Prof. Carola Hunte vom Freiburger Institut für Biochemie und Molekularbiologie und dem Freiburger Exzellenzcluster BIOSS (Centre for Biological Signalling Studies) gelang in Kooperation mit Prof. Ulrich Brandt, Professor für Molekulare Bioenergetik und Mitglied im Exzellenzcluster „Makromolekulare Komplexe“, und Dr. Volker Zickermann aus seiner Arbeitsgruppe ein wichtiger Schritt zu diesem Verständnis.

Der Energiestoffwechsel findet in den sogenannten Kraftwerken der Zelle, den Mitochondrien, statt. Sie überführen die von außen in Form von Nahrung aufgenommene Energie in den zellintern universell einsetzbaren Energieträger Adenosintriphosphat, kurz ATP. Eine Kette von fünf, kompliziert gebauten molekularen Maschinen in der Mitochondrienmembran führt diese Energieumwandlung durch. Die Herstellung von ATP in den Mitochondrien durchläuft deshalb so viele Schritte, weil die zugrunde liegende Umsetzung einer Knallgasreaktion entspricht. Lässt man im Labor Wasserstoffgas und Sauerstoff miteinander reagieren, verpufft die in den Ausgangsstoffen enthaltene Energie explosionsartig in Form von Wärme. Bei der biologischen Oxidation durch die membrangebundenen Proteinkomplexe der Atmungskette wird die Energie dagegen kontrolliert in kleinen Paketen freigesetzt. Wie bei einer Brennstoffzelle wird sie in ein elektrisches Membranpotential umgewandelt, das letztendlich für die Synthese von ATP genutzt werden kann. Zusammengerechnet bilden die Oberflächen der Mitochondrien im menschlichen Körper eine Fläche von 14.000 Quadratmetern. Dort werden täglich etwa 65 Kilogramm ATP produziert.

Das jetzt vorgestellte Strukturmodell gibt wichtige und unerwartete Hinweise auf die Funktionsweise von Komplex I. Eine aus keinem anderen Protein bekannte Form eines molekularen „Transmissionsgestänges“ scheint demnach für den Energietransfer innerhalb des Proteinkomplexes durch mechanische Kopplung im Nanomaßstab verantwortlich zu sein. Übertragen auf die Welt der Technik ließe sich dies als eine Kraftübertragung durch eine Art Kuppelstange beschreiben wie sie etwa die Räder einer Dampflok verbindet. Dieser neue nanomechanische Ansatz soll nun durch ergänzende funktionelle Studien und eine verfeinerte strukturelle Analyse weiter untersucht werden.

Den Artikel finden Sie unter:

http://www.pr.uni-freiburg.de/pm/2010/pm.2010-07-02.156/

Quelle: Universität Freiburg (07/2010)


Veröffentlichung
Science: Functional Modules and Structural Basis of Conformational Coupling in Mitochondrial Complex I
Carola Hunte, Volker Zickermann, Ulrich Brandt
Published online: 1. Juli 2010 Science DOI: 10.1126/science.1191046
http://www.sciencemag.org/cgi/content/abstract/science.1191046

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.