Volltextsuche

Montag, den 14. Juni 2010 um 08:03 Uhr

Silizium kann jetzt noch mehr

IFW-Forscher machen Silizium thermisch isolierend und erschließen damit neue Anwendungs¬felder für das Lieblingsmaterial der Halbleiterindustrie. Damit wird Silizium auch interessant für die Kühlung von Halbleiterchips und für Mini-Generatoren, die die Prozesswärme in nutzbare elektrische Energie umwandeln.

Silizium ist das Kernmaterial der Mikroelektronik. Ohne Silizium hätten wir heute wohl weder preisgünstige und kompakte Computer noch das Internet. Ein wesentlicher Teil seines Erfolges verdankt Silizium seiner sehr guten Wärmeleitfähigkeit. Wärme, die durch den Stromfluss in den Chips entsteht, kann aufgrund dieser Eigenschaft sehr effizient abgeleitet werden. Die Wärmeleitfähigkeit ist eine temperaturabhängige Materialkonstante, die in Watt pro Meter und Kelvin - W/(m x K) - angegeben wird. Der Wert der Wärmeleitfähigkeit von Silizium beträgt etwa 150 W/m K und ist nicht viel niedriger als der von Metallen wie Aluminium (250 W/m K).

Die gute Wärmeleitfähigkeit ist aber auch der Grund, warum Silizium bisher nicht in der Thermoelektrik eingesetzt wird. Hier werden Materialien mit niedriger Wärmeleitfähigkeit gesucht, um Wärme in Strom bzw. umgekehrt Strom in Wärme umzuwandeln. Das größte Potenzial der Thermoelektrik liegt in der Nutzung von Abwärme aller Art zur direkten Umwandlung in elektrische Energie. In Zukunft könnte die Thermoelektrik eine ähnlich revolutionäre Rolle spielen wie die Solartechnik und entschieden zum Klimaschutz beitragen. Deshalb rückt die Frage nach geeigneten thermoelektrischen Materialien immer mehr in den Fokus. Gern würde man dabei auf das gut bekannte Silizium zurückgreifen.
In der jüngsten Ausgabe der Zeitschrift „nature materials“ ist ein Beitrag erschienen, der den Durchbruch bringen könnte. Forscher aus Dresden, Stuttgart, Freiburg, Grenoble und Bordeaux haben ein Verfahren entwickelt, das die Wärmeleitfähigkeit von Silizium bis unter 1 W/m K senken kann - niedriger als der Wert für ein doppelt verglastes Fenster. Dabei werden Nanokristalle aus Germanium in Silizium eingebettet, die die Wärmeleitung effizient unterbinden. Die Entdeckung eröffnet eine Reihe von Möglichkeiten für zukünftige Anwendungen von Silizium-basierten Materialien für die vor-Ort-Kühlung von Chips, dem sogenannten „on-chip cooling“. Auch Mini-Kraftwerke, die die entstehende Prozesswärme an Ort und Stelle in nutzbare elektrische Energie umwandeln können, rücken in greifbare Nähe. Nicht zuletzt ist die Entdeckung sehr wichtig für das Verständnis der grundlegenden physikalischen Mechanismen, die die Wärmeleitfähigkeit in neuen innovativen Materialien bestimmen.

Beiteiligte Institute:
- Institut für Integrative Nanowissenschaften des IFW Dresden
- Max-Planck-Institut für Festkörperforschung Stuttgart
- Fraunhofer IPM Freiburg
- CEA Grenoble, Frankreich
- CNRS Bordeaux, Frankreich


Den Artikel finden Sie unter:

http://www.umweltbundesamt.de/uba-info-presse/2010/pd10-034_fluorhaltige_feuerloeschschaeume_schuetzen_aber_leider_nicht_die_umwelt.htm

Quelle: Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (06/2010)


Veröffentlichung:
G. Pernot, M. Stoffel, I.Savic, F. Pezolli, P. Chen et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers, nature materials, DOI:10.1038/NMAT2752, published online 2. Mai 2010

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.