Volltextsuche

Dienstag, den 07. Februar 2023 um 04:09 Uhr

Präzises Röntgenthermometer für warme dichte Materie

Warme dichte Materie (WDM) ist tausende Grad heiß und steht unter dem Druck tausender Erdatmosphären. Im Weltall ist sie vielerorts anzutreffen, auf der Erde verspricht man sich nutzbringende Anwendungen von ihr. Sie zu erforschen ist allerdings eine Herausforderung. Selbst grundlegende Eigenschaften eines Materials unter WDM-Bedingungen wie dessen Temperatur sind alles andere als einfach zu bestimmen. Ein internationales Forscherteam unter Leitung von Dr. Tobias Dornheim vom Center for Advanced Systems Understanding (CASUS) am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) zeigt einen mathematischen Lösungsweg auf, mit dem sich die Temperatur solcher Materie präzise ermitteln lässt. Wie das Team betont, kann das Verfahren ohne weiteres an den weltweiten Experimentieranlagen der Materieforschung zum Einsatz kommen und den Erkenntnisgewinn beschleunigen.

Die Beschäftigung mit warmer dichter Materie dient in erster Linie dem Verständnis von Planeten und Sternen. Dass die Fachwelt versucht, solche Materiezustände mit aufwändigen Experimenten auf der Erde nachzustellen, hat aber auch noch andere Gründe: Neuartige Werkstoffe mit faszinierenden Eigenschaften sind ebenso denkbar wie bedeutende Fortschritte für die Trägheitsfusion, einer vielversprechenden Methode der Energiegewinnung.

Im Labor kann warme dichte Materie dank kräftiger Laserblitze aktuell für Bruchteile von Sekunden erzeugt werden. Die Auswertung dieser Experimente ist aufwändig und behindert das Verständnis, was warme dichte Materie ist und wie sie sich verhält. Als wichtige Messmethodik hat sich mittlerweile die Röntgenstreuung etabliert. Hierbei wird zusätzlich zu jenem Laser, der die warme dichte Materie erzeugt, ein Röntgenlaser auf die Probe gerichtet. Je nachdem, wie dessen Licht beim Durchgang durch die Probe gestreut wird, können Rückschlüsse auf die Eigenschaften des Materials gezogen werden. Die Auswertung dieser sogenannten Röntgenthomsonstreuung erfolgt entweder über Simulationen oder über Modelle. Beide Varianten sind allerdings nicht sonderlich genau, da man immer gewisse Annahmen treffen muss, um an Ergebnisse zu kommen. Außerdem sind besonders die Simulationen ressourcenintensiv. Für sie benötigt die Forschung die besten Höchstleistungsrechner der Welt. Dadurch ist die Auswertung der Experimente ein Flaschenhals für den wissenschaftlichen Fortschritt.

„Wir zeigen mit unserer Arbeit, dass die Auswertung der Streuungsdaten ohne Simulationen und ohne Modelle mit all ihren Näherungen und Annahmen möglich ist“, sagt Dr. Tobias Dornheim, Leiter der Nachwuchsgruppe „Frontiers of Computational Quantum Many-Body Theory“ am CASUS und Erstautor der Studie. „Wir reproduzieren keine Experimente, sondern extrahieren die Temperatur direkt aus der Messung. Damit reduziert sich der Aufwand, Experimente mit warmer dichter Materie auszuwerten, um ein Vielfaches. Unsere Methode ist zudem deutlich präziser als der Rückgriff auf Simulationen und Modelle. Die Interpretation der Ergebnisse gelingt einfach und unkompliziert.“ Dornheim und sein Team greifen bei ihrem Ansatz auf ein grundlegendes mathematisches Verfahren zurück, die Laplace-Transformation. Anhand von drei Beispielen zeigen sie auf, dass sie mit ihrem Ansatz die Temperatur von warmer dichter Materie unverzerrt ermitteln können. Welche Materialien konkret untersucht werden beziehungsweise von welcher experimentellen Anlage die Streuungsdaten stammen, ist dabei zweitrangig. Die vorgeschlagene Eigenschaftsbestimmung, auch Diagnostik genannt, ist universell anwendbar und benötigt keine Höchstleistungsrechner.

Ein Projekt, wie es für das CASUS typisch ist

„Dieser neue Ansatz zeigt, dass man manchmal eine rechenintensive Aufgabe schneller und besser erledigen kann, indem man anders über das komplexe Problem nachdenkt“, sagt Dr. Michael Bussmann, Gründungsbeauftragter des CASUS. „Diese Publikation steht exemplarisch für den Weg, den wir mit dem CASUS eingeschlagen haben: die daten-intensive Erforschung komplexer Systeme über einzelne Disziplinen hinweg neu zu denken.“

„Wir sind zuversichtlich, dass unser Verfahren von Experimentalphysikern angenommen wird und ihnen bei der Auswertung ihrer Arbeit hilfreich ist“, ergänzt Dornheim. Beispielweise könnte die Fusionsforschung profitieren. Hier wird versucht, in Sternen stattfindende Prozesse auf der Erde nachzubilden. Bei der Trägheitsfusion wird Brennstoff aus Deuterium und Tritium extrem aufgeheizt und verdichtet, ein Zwischenzustand ist die warme dichte Materie. Mithilfe der Röntgenstreuung wird dieser Prozess genau überwacht.

Entscheidender Baustein für die Fusionsforschung

Eine Meldung der National Ignition Facility (NIF) des Lawrence Livermore National Laboratory (LLNL) in den USA verlieh dem Feld der Trägheitsfusion jüngst einen kräftigen Schub. So gelang am NIF erstmals eine Fusionszündung, bei der mehr Energie durch die Fusionsreaktion entstand, als durch die Laser eingetragen wurde. CASUS-Doktorand Maximilian Böhme forschte über den Jahreswechsel von 2018 zu 2019 sechs Monate an der NIF. Als Zweitautor der neuen Publikation trug er maßgeblich zur Entwicklung des Ansatzes bei. „Auch bei den Fusionsexperimenten an der NIF wird die Temperatur mittels Röntgenstreuung gemessen. Und das Team dort kämpft mit genau denselben Unzulänglichkeiten verfügbarer Diagnostika. Eine schnelle und präzise Temperaturermittlung ist definitiv ein entscheidender Baustein, der die Fusionsenergieforschung einen Riesenschritt nach vorn bringen wird. Genau diesen Baustein liefern wir jetzt mit unserer Arbeit“, schätzt Böhme ein.

Darüber hinaus ist das neue Verfahren für Experimente der Astrophysik hilfreich, für die die Helmholtz International Beamline for Extreme Fields (HIBEF) am European XFEL genutzt wird. Einige dieser Versuche sollen dabei helfen, die vielen heute bekannten Planeten außerhalb unseres Sonnensystems besser zu verstehen und zu prüfen, ob auf einem davon sogar Leben möglich sein könnte.

Gemeinsam mit Dr. Tilo Döppner (LLNL), Dr. Thomas Preston (European XFEL) und Prof. Dominik Kraus (Universität Rostock und HZDR) – alle Experimentalphysiker und Mitautoren der aktuellen Publikation – wollen Dornheim und sein Team nun zeigen, dass ihre Methode Rückschlüsse auf weitere Eigenschaften warmer dichter Materie über die Temperatur hinaus erlaubt – und das ebenso unkompliziert und präzise.


Den Artikel finden Sie unter:

https://www.hzdr.de/db/Cms?pOid=68200&pNid=99

Quelle: Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (02/2023)


Publikation:
T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. R. Preston, Z. A. Moldabekov, J. Vorberger, Accurate temperature diagnostics for matter under extreme conditions, in Nature Communications, 2022 (DOI: 10.1038/s41467-022-35578-7)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.