Volltextsuche

Montag, den 20. Januar 2020 um 14:43 Uhr

Chemiker lassen Bor-Atome wandern

Organische Moleküle mit Atomen des Halbmetalls Bor sind wichtige Bausteine für Syntheseprodukte, um Arzneistoffe und landwirtschaftliche Chemikalien herzustellen. Bei den üblicherweise in der Industrie eingesetzten Stoffumwandlungen geht allerdings häufig die wertvolle Bor-Einheit verloren, die in einem Molekül ein anderes Atom ersetzen kann. Chemiker der WWU stellen jetzt Kohlenstoff-Kohlenstoff-Kupplungen vor, bei denen das Bor-Atom erhalten bleibt. Die Studie ist in der Fachzeitschrift „Chem“ erschienen.

Organische Moleküle mit Atomen des Halbmetalls Bor zählen zu den bedeutendsten Bausteinen für Syntheseprodukte, die nötig sind, um Arzneistoffe und landwirtschaftliche Chemikalien herzustellen. Bei den üblicherweise in der Industrie eingesetzten Stoffumwandlungen geht allerdings häufig die wertvolle Bor-Einheit verloren, die in einem Molekül ein anderes Atom ersetzen kann. Chemikern der Westfälischen Wilhelms-Universität Münster (WWU) ist es jetzt gelungen, die Anwendungsmöglichkeiten von handelsüblichen und industriell verwendeten Bor-Verbindungen, sogenannten Allylboronsäureestern, wesentlich zu erweitern. Die Studie ist in der Fachzeitschrift „Chem“ erschienen.

Da sogenannte Boronsäurederivate in ihren Varianten sehr vielfältig und verlässlich anwendbar sind, setzen sie Chemiker häufig ein, um wichtige Kohlenstoff-Kohlenstoff-Kupplungen (C-C-Kupplungen) aufzubauen. Das bedeutendste Verfahren, bei dem Boronsäurederivate verwendet werden, ist die mit dem Nobelpreis ausgezeichnete Suzuki-Miyaura-Kupplung. Ebenfalls breite Anwendung in der Synthese finden die sogenannten Allylboronsäureester, die auch zu dieser Klasse der Bor-Verbindungen gehören.

In ihrer aktuellen Studie stellen die Chemiker um Prof. Dr. Armido Studer vom Organisch-Chemischen Institut der WWU nun C-C-Kupplungen vor, bei denen die Bor-Einheit aus dem Ausgangsstoff im Produkt erhalten bleibt. Die Wissenschaftler verwenden dazu Methoden der sogenannten Radikalchemie. Das Prinzip funktioniert so: Die Bor-Einheit „wandert“ von einem Kohlenstoffatom zum Nachbaratom und ermöglicht dadurch eine zweite C-C-Kupplung.

Durch diese Methode können die Chemiker schrittweise einzelne Bausteine von Molekülen an unterschiedlichen Stellen des Grundgerüsts einbauen. „Da die Bor-Einheit nach wie vor im Produktmolekül verbleibt, sozusagen ,konserviert‘ wird, kann sie zusätzlich durch eine weitere Moleküleinheit ersetzt werden, wofür sich das gesamte Spektrum der industriellen Methoden eignet. Die handelsüblichen Allylboronsäureester erscheinen somit in einem neuen Gewand“, betont Studienleiter Armido Studer. Die neue Methode kann zukünftig unter anderem für die Herstellung von Arzneimitteln relevant sein.


Den Artikel finden Sie unter:

https://www.uni-muenster.de/news/view.php?cmdid=10768

Quelle: Westfälische Wilhelms-Universität Münster (01/2019)


Publikation:
K. Jana et al. (2020): Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem; DOI: 10.1016/j.chempr.2019.12.022
https://www.sciencedirect.com/science/article/abs/pii/S2451929419305698

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.