Dienstag, den 20. November 2018 um 05:23 Uhr

Kanäle für die Energieversorgung

Forscherinnen und Forscher der Universität Freiburg haben in Zusammenarbeit mit internationalen Kolleginnen und Kollegen beschrieben, wie wasserunlösliche Membranproteine mit Hilfe von Chaperon-Proteinen durch den wässrigen Raum zwischen den mitochondrialen Membranen transportiert werden. Die Membranproteine ermöglichen es den Zellkraftwerken, kleine Biomoleküle zu importieren und zu exportieren. Damit hat das Team um Prof. Dr. Nils Wiedemann aus Freiburg und Dr. Paul Schanda aus Grenoble/Frankreich gemeinsam mit Forschern der Universität Kopenhagen/Dänemark und der Universität Tübingen eine grundlegende Frage der Bildung von Mitochondrien geklärt. Der Europäische Forschungsrat (ERC) hat die Forschung mit einem Consolidator und einem Starting Grant gefördert. Die Wissenschaftlerinnen und Wissenschaftler haben ihre Ergebnisse in der Fachzeitschrift „Cell“ veröffentlicht.

Wie der menschliche Körper aus unterschiedlichen Organen besteht, enthalten eukaryotische Zellen kleinere Organellen wie die Mitochondrien, welche das Energiemolekül Adenosintriphosphat (ATP) synthetisieren. Die Gesamtmenge an ATP, die täglich zur Versorgung der Zellen über die mitochondrialen Membranen transportiert wird, entspricht dabei etwa dem Körpergewicht des Menschen. Dafür gibt es spezielle Eiweißmoleküle, die als Kanäle und Transporter in der Innenmembran und in der Außenmembran der Mitochondrien enthalten sind. Diese Kanäle und Transporter werden außerhalb der Mitochondrien hergestellt und über die äußere Membran in die Mitochondrien transportiert. Obwohl diese Eiweißmoleküle sehr schlecht wasserlöslich sind, müssen sie durch den wässrigen Intermembranraum transportiert werden, damit sie in die äußere beziehungsweise innere Mitochondrien-Membran eingebaut werden können.

Für diese Aufgabe enthält der Intermembranraum spezielle TIM-Chaperon-Proteine, welche die Kanal- und Transporter-Proteine binden und durch den Zwischenraum transportieren. Das Forscherkonsortium hat nun erstmals den molekularen Mechanismus dieses Vorgangs aufgeklärt. Dabei haben sich die strukturellen Arbeiten von Dr. Katharina Weinhäupl und die mitochondrialen Funktionsstudien von Caroline Lindau wechselseitig ergänzt. Den Ergebnissen zufolge besitzen die ringförmig angeordneten TIM-Chaperone sechs wasserabweisende Klammern, an denen die lose gefalteten Kanäle und Transporter locker gebunden werden, ohne dass diese dabei verklumpen. Dies ist wichtig, da viele Krankheiten wie Alzheimer oder Parkinson im Zusammenhang mit der Bildung von zusammengelagerten Eiweißmolekül-Aggregaten stehen. Entsprechend verursacht eine Fehlfunktion der TIM-Chaperone das Mohr-Tranebjærg Syndrom mit neurologischen Taubheits- und Bewegungsstörungen.


Den Artikel finden Sie unter:

http://www.pr.uni-freiburg.de/pm/2018/kanaele-fuer-die-energieversorgung

Quelle: Albert-Ludwigs-Universität Freiburg im Breisgau (11/2018)


Publikation:
Katharina Weinhäupl, Caroline Lindau, Audrey Hessel, Yong Wang, Conny Schütze, Tobias Jores, Laura Melchionda, Birgit Schönfisch, Hubert Kalbacher, Beate Bersch, Doron Rapaport, Martha Brennich, Kresten Lindorff-Larsen, Nils Wiedemann, Paul Schanda: Structural Basis of Membrane Protein Chaperoning Through the Mitochondrial Intermembrane Space. In: Cell 175, 1365-1379. https://doi.org/10.1016/j.cell.2018.10.039

Fortbildungen

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.